[Total No. of Pages: 2

236-02-05 R

M.Sc.DEGREE EXAMINATION, APRIL - 2015

Branch: Mathematics SECOND SEMESTER

MA 205 - ADVANCED COMPLEX ANALYSIS

(Effective from the batch of students admitted in the year 2014-2015)

(Common to Applied Mathematics)

(Common to suppl. Can. also i.e, who appeared in april 2014 exam or earlier)

Time: 3 Hours

Max. Marks: 90

Part - A

Answer any FOUR of the following. Each question carries 41/2 marks.

(Marks: 4×4½=18)

1. Obtain Laurent expression for $f(z) = \frac{1}{z^4(1-z)^2}$ for |z| > 1

2. Locate the poles of $(z^2+1)^{-1}(z-1)^{-4}$ and determine their order

3. State Schwarz lemma

4. Evaluate $\int_{c_{2}^{2}(1)} (z^{4} + 4)^{-1} dz$

5. State Riemann mapping theorem.

6. Prove that $u_1(x,y)=x^2-y^2, u_2(x,y)=x^3-3xy^2$ are harmonic.

7. If an entire function f(z) has no zeros, then prove that f(z) is of the form $f(z) = e^{g(z)}$ Where g(z) is an entire function

8. Prove that the infinite product $\prod_{n=1}^{\infty} (1+v_n)$ is absolutely convergent iff the infinite

series $\sum_{n=1}^{\infty} v_n$ is absolutely convergent.

Part - B

Answer All questions. Each question carries 18 marks.

(Marks: 4×18=72)

Unit-I

9. State and prove Picard's theorem.

236-02-05R

4

(1)

P.T.O.

- 10. a) Find the three different Laurent series representations for the function $f(z) = \frac{3}{2+z-z^2}$ involving powers of z
 - b) Locate the poles of $g(z) = \frac{1}{5z^4 + 26z^2 + 5}$ and specify their order

Unit-II

- 11. a) State and prove Cauchy residue theorem.
 - b) Find the residue of $f(z) = \frac{z^2 + 4z + 5}{z^3}$ at z=0

OR

- 12. a) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^3}$
 - b) State and prove Hurwitz theorem.

Unit-III

- 13. a) State and prove uniqueness theorem for conformal mapping.
 - b) Explain general principles of conformal mapping.

OR

14. State and prove the Dirichlet's theorem.

Unit-IV

- 15. a) State and prove Weierstrass theorem.
 - b) State and prove cauchy theorem on partial fractions.

(OR)

- **16.** a) State and prove Mittag-Letter's theorem.
 - b) Expand the function secz in partial fractions.

1.
$$f(z) = \frac{1 - e^{\frac{2iz}{z^4}}}{z^4}$$
 about the only $\frac{2i}{z^2}$ with centre $z = 1$
236-02-05R

236-02-01R

M.Sc. DEGREE EXAMINATION, APRIL - 2015

Branch: Mathematics

SECOND SEMESTER MA 201- GALOIS THEORY

(Effective from the batch of students admitted in the year 2014-15) (Common for both CBCS & NON-CBCS)

Time: 3 Hours

Max. Marks: 90

Part - A

Answer any Four questions. Each question carries 41/2 marks

(Marks: $4 \times 4 \frac{1}{2} = 18$)

- 1. Define an irreducible polynomial p(x) over a field F. Show that F(x)/(p(x)) is a field.
- 2. Using Eisenstein criterion, show that x^2 -2 is irreducible over Q.
- 3. Define a splitting field of a polynomial over a field F. Give an example of a splitting field.
- **4.** Find the degree of the extension of the splitting field of x^3 -2 in Q[x].
- **5.** With usual notation, show that $|G(E/F)| \le [E:F]$, where E is a finite extension a field F.
- 6. State and prove Dedekind Lemma.
- 7. Show that $\phi_3(x) = x^2 + x + 1$ is cyclotomic polynomial. Find its degree.
- 8. Show that roots of x^4 -1 in F/x forms a cyclic group.

Part - B

AnswerONE question from each unit. Each question carries 18 marks.

(Marks $:4 \times 18 = 72$)

Unit - I

- 9. a) State and prove Gauss lemma
 - b) Let $f(x) \in f[x]$ be a polynomial of degree 2 or 3. Show that f(x) is reducible iff f(x) has a root in F.

(1) [P.T.O.

236-02-01R

10. a) Decide $2x^5 - 5x^4 + 5$ is irreducible over Q or not.

b) Let $F \le E \le K$ be fields. If $[K:E] < \infty$ and $[E:F] < \infty$, then show that $[K:F] < \infty$.

Unit - II

11. a) Show that $Q(\alpha)$ is a normal extension of Q where $\alpha = e^{\frac{m}{4}}$

b) Is $Q(5\sqrt{7})$ a normal extension of Q? Justify.

OR

12. a) Show that using relevant notation (f(x).g(x)) = f'(x).g(x) + f(x).g'(x)

b) Let α be a root of a polynomial f(x) in F(x) of degree ≥ 1 . Then α is a multiple root of $f(x) \Leftrightarrow f'(\alpha) = 0$

Unit - III

13. Let E be a finite separable extension of a field F. Show that the following one equivalent.

a) E is a normal extension of F

b) [E:F]=|G(E/F)|

(Assume relevant information)

OR

14. Show that $G(Q(\alpha)/Q)$ is isomorphic to the cyclic group of order 4 where $\alpha^5 = 1, \alpha \neq 1$

Unit - IV

15. a) Describe Klein form-group

b) Show that the Galois group of x^4+x^2+1 and Galois group of x^6-1 are same and find its order.

OR

16. Express the $x_1^2 + x_2^2 + x_3^2$ and $(x_1 - x_2)^2 (x_2 - x_3)^2 (x_3 - x_1)^2$ as rational functions the elementary symmetric function.

M.Sc. DEGREE EXAMINATION, APRIL - 2015

Branch: Mathematics SECOND SEMESTER

MA 202-MEASURE AND INTEGRATION

(effective from the batch of students admitted in the year 2014-2015)

(Common to Applied Mathematics)

(Common to suppl. Can. also i.e., who appeared in April 2014 exam or earlier)

Time: 3 Hours

Max. Marks: 90

PART-A

Answer any FOUR of the following. Each question carries 41/2 marks

(Marks: $4 \times 4^{1/2} = 18$)

- 1. If A is a countable set then show that the set of all finite sequences from A is also countable.
- 2. If $A \subset B$, then prove that $\overline{A} \subset \overline{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 3. Prove that every Borel set is measurable. In particular each open set and each closed set is measurable.
- **4.** Let $E \subset [0,1]$ be a measurable set. Prove that for each $y \in [0,1]$ the set E + y is measurable and m(E+y) = mE
- 6. State and prove Fatou's lemma_x
- 7. If f is integrable on [a,b] and $\int f(t)dt = 0 \forall x \in [a,b]$ then f(t) = 0 a.e in [a,b]
- **8.** If f is of bounded variation on $\begin{bmatrix} a \\ a, b \end{bmatrix}$ then show that $T_a^b = P_a^b + N_a^b$ and $f(b) f(a) = P_a^b + N_a^b$

PART-B

Answer all questions. Each question carries 18 marks.

(Marks: 4×18=72)

Unit - I

- a) Show that the complement of an open set is closed and complement of a closed set is open
 - b) Let a be an algebra of subsets and $\langle A_i \rangle$ a sequence of sets in \overline{g} . Prove that there is a sequence $\langle B_i \rangle$ of sets in such that $B_n \cap B_m = \phi$ for $n \neq m$ and $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$

[P.T.O

10. a) State and prove Heine Borel theorem

_

b) Let f be a real-valued function defined on $(-\infty,\infty)$. Prove that f is continuous iff for each open set o of real numbers $f^{-1}(o)$ is an open set.

- 11. a) Prove that the interval (a, ∞) is measurable
 - b) Let c be a constant and f and g be two measurable real valued functions defined on the same domain. Prove that f + g, cf, fg are measurable

(Or)

- **12.** a) Let E be a measurable set of finite measure, and $\langle f_n \rangle$ a sequence of measurable functions defined on E. Let f be a real valued function such that for each x in E we have $f_n(x) \to f(x)$. Then prove that for given $\epsilon > 0$ and $\delta > 0$, there is a measurable set $A \subset E$ with $mA < \delta$ and an integer N such that $\forall x \notin A$ and all $n \ge N$, $|f_n(x) - f(x)| < \epsilon$
 - Let $\langle E_n \rangle$ be an infinite decreasing sequence of measurable sets, i.e a sequence with $E_{n-1} \subset E_n$ for each n. Let mE_i be finite. Prove that $m\left[\bigcap_{n=1}^{\infty} E_i\right] = \lim_{n \to \infty} mE_n$

Unit - III

- 13. a) State and prove bounded convergence theorem
 - Let f and g be integrable over E. Prove that
 - i) The function f+g is integrable over E, and $\int_{E} f+g = \int_{E} f + \int_{E} g$
 - ii) If A and B are disjoint measurable sets contained in E then show that $f = \int_A f + \int_B f$

(Or)

14. Let f be defined and bounded on a measurable set E with mE finite. Prove that $\inf_{f \ge \psi} \int_{E} \psi(x) dx = \sup_{f \ge \varphi} \int_{E} \varphi(x) dx \text{ for all simple functions iff } f \text{ is measurable}$ Unit-IV

15. a) Let f be an increasing real - valued function on the interval [a,b]. Show that f is differentiable almost every where. The derivative f' is measurable and $\int f'(x)dx \le f(b) - f(a)$

Prove that a function f is of bounded variation on [a,b] iff f is the difference two monotone real-valued functions on [a,b]

- **16.** a) If f is absolutely continuous on [a,b] and f'(x)=0 a.e then prove that f is constant
 - If φ is a continuous function on (a,b) and if one derivative (say D⁺) of φ is non b) decreasing then φ is convex.

M.Sc. DEGREE EXAMINATION, APRIL - 2015

Branch: Mathematics

SECOND SEMESTER

MA 203 - PARTIAL DIFFERENTIAL EQUATIONS

(effective from the batch of students admitted in the year 2014-15) (Common to Applied Mathematics)

(Common to suppl. Can also i.e; who appeared in April 2014 exam or earlier)

Time: 3 Hours

Max. Marks: 70

Part-A

Answer any Four questions. Each question carries 4½ marks (Marks: 4×4½=18)

- 1. Find the integral curve of the equation $\frac{dx}{xz-y} = \frac{dy}{yz-x} = \frac{dz}{1-z^2}$
- 2. Verify the integrability and solve the equation $x(y^2-a^2)dx + y(x^2-z^2)dy z(y^2-a^2)dz = 0$
- 2. Eliminate the arbitrary function f of $f(x^2 + y^2 + z^2, z^2 2xy) = 0$
- Find the general integral of the linear partial differential equation $(y+2x)p-(x+yz)q=x^2-y^2$
- 5. Solve with usual notation $r + s 2t = e^{x+y}$
- If u = f(x+iy) + g(x-iy), show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- 7. If $\rho > 0$ and $\psi(t) = \int_{V}^{\infty} \frac{f(r')df'}{[r-r']}$, where V is the volume bounded. Prove that $\frac{\lim_{V \to R} f(r')df'}{[r-r']}$, where V is the volume bounded.
- Show that the surfaces $x^2 + y^2 + z^2 = cx^{2/3}$ can from a family of equipotential surfaces and find the general form of corresponding potential function.

Part - B

Answer one question from each unit. Each question carries 18 marks.

(Marks $:4\times18=72$)

Unit - I

- 9. a) Find the internal curve of the equations $\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$
 - hercty the integrability of the equation and find its primitive, given

$$(y^2 + yz)dx + (xz + z^2)dy + (y2 - xy)dz = 0$$

OR

206 - 02 - 04 R

(1)

[P.T.O.]

- Find the orthogonal trajectories on the coincoid (x+y)z=I of the conics in which it is cut by the system of planes x-y+z=k, where K is a parameter
 - Prove that the necessary and sufficient condition that there exists between two functions h(x,y) and v(x,y) a relation F(u,v)=0, not involving x on y explicitly is that $\frac{\partial(u,v)}{\partial(x,y)}=0$

Unit - II

- Find the surfaces which is orthogonal & one parameter system $z = cxy(x^2 + y^2)$ and which passes through the hyperbola $x^2 - y^2 = a^2$, $z \ne 0$
 - Find the complete integral of the equation $(p^2+q^2)y=q^2$ b)
- OR Find the general integral of linear partial differential equation 12. a) 2y(z-3)p+(2x-z)q=y(2x-3), which passes through the circle z=0, $z^2+y+=2x$
 - Find the complete integral of $2(z + xp + yp) = yp^2$

- Solve the equation $\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial y^4} = 2 \frac{\partial^4 z}{\partial x^2 \partial y^2}$. 13.
 - Reduce the equation $(n-1)^2 \frac{\partial^2 z}{\partial x^2} y^{2n} \frac{\partial^2 z}{\partial y^2} = ny^{2n-1} \frac{\partial z}{\partial y}$ to connonical form and find its b) general solution

- Solve the equation $x^2r y^2t + xp yq = \log x$ 14. a)
 - Reduce the equation $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form.

Unit - IV

15. A uniform insulated sphere of dielectric constant k and radius a carries on its surface a charge of density $\lambda p_n(\cos\theta)$. Prove that the interior of the sphere contributes an amount

$$\frac{8\pi^2\lambda^2a^3kn}{(2n+1)(kn+n+1)^2}$$

OR

16. Prove that the solution of a certain Neumann problem can differ from one another by a

236-02-04 R

M.Sc. DEGREE EXAMINATION, APRIL - 2015 SECOND SEMESTER Branch: Mathematics

MA 204-TOPOLOGY

(effective from the batch of students admitted in the year 2014-2015)

(Common to Applied Mathematics)

(Common to suppl. Can. also i.e., who appeared in April 2014 exam or earlier)

Time: 3 Hours

Max. Marks: 90

PART-A

Answer any FOUR of the following. Each question carries 41/2 marks

(Marks: $4 \times 4\frac{1}{2} = 18$)

- 1. Let X be a metric space with metric d. Show that d_1 , defined by $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$, is also a metric on X.
- 2. State and prove Cauchy's inequality
- 3. Let X be a topological space and A an arbitrary subset of X. Prove that $\bar{A} = \{x : each neighbourhood of x intersects A\}$
- 4. If f and g are real continuous functions defined on a metric space X then show that f + g is also continuous.
- 5. Prove that any closed subspace of a compact space is compact.
- 6. Prove that every sequentially compact space si compact
- 7. Show that every compact subspace of a Hausdorff space is closed
- 8. Prove that a topological space is a T₁-space if and only if each point is a closed set.

PART - B

Answer All questions. Each question carries 18 marks.

(Marks: $4\times18=72$)

Unit - I

- 9. a) Let X be a metric space. Prove that a subset G of X is open if and only if it is a union of open spheres
 - b) Let X be a complete metric space and let Y be a subspace of X, show that Y is complete if and only if it is closed.

236-02-04 R (1) [P.T.O.

- 10. a) Let X and Y be metric spaces and f be a mapping of X in to Y. Show that f is continuous at x_0 iff $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$
 - b) Prove that the set R^n of all n-tuples, $x = (x_1, x_2, ... x_n)$ of real numbers is a real banach space with respect to coordinate wise addition and scalar multiplication and the norm

defined by
$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

Unit - II

- 11. a) Prove that every separable metric space is second countable
 - b) Let X be a topological space. Prove that any closed subset of X is the disjoint union of its set of isolated points and its set of limit points.

(Or)

- 12. a) Let X be a non-empty set. Show that the family of all topologies on X is a complete lattice with respect to the relation "is weaker than".
 - b) Let X be a second countable space. Prove that any open base for X has a countable sub base which is also open base.

Unit - III

- 13. a) Prove that the product of any non-empty class of compact spaces is compact.
 - b) Prove that closed subspace of a complete metric space is compact if and only if it is totally bounded.

(Or

- 14. a) State and prove Lebesgue's covering lemma.
 - b) Prove that every sequentially compact metric space is totally bounded

Unit - IV

- 15. a) Prove that every compact Hausdorff space is normal
 - b) Let X be an arbitrary completely regular space. Prove that there exists a compact Hausdorff space $\beta(X)$ with the following properties.
 - i) X is a dense subspace of $\beta(X)$
 - ii) Every bounded continuous real function defined on X has a unique extension to a bounded continuous real function dense on $\beta(X)$

(Or

16. State and prove Urysohn imbedding theorem.

B-236-02-04(a)

M.Sc. DEGREE EXAMINATION, MAY - 2017

Branches: MATHEMATICS / APPLIED MATHEMATICS

SECOND SEMESTER

MA 204(A): ADVANCED COMPLEX ANALYSIS

(Revised Syllabus w.e.f. 2016 - 17)

Time: 3 Hours

Max. Marks: 100

Part - A

Answer any Four of the following questions. Each question carries 5 marks. $(4 \times 5 = 20)$

- 1. Find the Laurent expansion of the function $f(z) = \frac{1}{z(1-z)}$ in the annulus 0 < |z| < 1.
- 2. Find the singular points and investigate its behaviour at infinity for the function $\frac{e^z}{1+z^2}$.
- Find the number of roots of the equation $z^8 4z^5 + z^2 1 = 0$ of absolute value less than 1.
- 4. Find the residues of $f(z) = \frac{1}{z^3 z^5}$ at all its isolated singular points and at infinity.
- Find the conjugate harmonic function v(x, y) corresponding to $u(x, y) = x^2 y^2 + x$ on the domain $|z| < \infty$.
- Find the analytic function f(z) = u(x, y) + i v(x, y) given $u(x, y) = x^2 y^2 + 2$.
- 7. If an entire function f(z) has no zeros, then prove that f(z) is of the form $f(z) = e^{s^{(z)}}$, where g(z) is an entire function.
- 8. Evaluate $\prod_{n=3}^{\infty} \frac{n^2 4}{n^2 1}$.

B-236-02-04(a)

(1)

[P.T.O.

Section - B

Answer ALL questions. Each question carries 20 marks.

 $(4 \times 20 = 80)$

- **9.** a) State and prove laurent's theorem.
 - b) Expand the function $f(z) = \frac{z^2 2z + 5}{(z 2)(z^2 + 1)}$ on the annulus 1 < |z| < 2 in a Laurent series.

OR

- 10. a) Prove that the point z_0 is a pole of order K of the function f(z) if and only if The Laurent expansion of f(z) at z_0 is of the form $f(z) = a_{-k}(z z_0)^{-k} + ...$ $+ a_{-1}(z z_0)^{-1} + a_0 + a_1(z z_0) + ...$; where $a_{-k} \neq 0$.
 - b) Prove that the function $f(z) = \sin \frac{1}{z}$ has an essential singular point at the origin.
- 11. State and prove Residue Theorem.

OR

- 12. a) Evaluate the integral $g = \int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx$ (0 < a < 1).
 - b) State and prove Schwarz lemma.
- 13. State and prove Dirichlet's problem for a disk.

OR

- 14. Explain Schwarz Christoffel Transformation.
- 15. a) Prove that the infinite product $\prod_{n=1}^{\infty} (1+v_n)$ converges if and only if the infinite series $\sum_{n=1}^{\infty} \log(1+v_n)$ converges.
 - b) State and prove Weierstrass Theorem.

ΩD

16. State and prove mittag - Leffler's Theorem.

**

B-236-02-04(a)

[Total No. of Pages: 2

B-236-02-01

M.Sc. DEGREE EXAMINATION, MAY- 2017 SECOND SEMESTER

Branch: MATHEMATICS

MA 201 : GALOIS THEORY

(Revised Syllabus w.e.f. 2016 - 17)

Time: 3 Hours

Max. Marks: 100

Section - A

Answer any FOUR of the following questions. Each question carries 5 marks. (4×5=20)

- 1. Let $f(x) \in F[x]$ be a polynomial of degree 2 or 3. Prove that f(x) is reducible if and only if f(x) has a root in F.
- 2. 4 Show that $x^2 2$ is irreducible over Q.
- 3. Let F = Z/(2). Show that the splitting field of $x^3 + x^2 + 1 \in F[x]$ is a finite field with eight elements.
- **4.** If $f(x) \in F[x]$ is irreducible over F than show that all the roots of f(x) have the same multiplicity.
- 5. Show that the group $G(Q(\alpha)/Q)$, $\alpha^5 = 1$, $\alpha \ne 1$ is isomorphic to the cyclic group of order 4.
- 6. If F is a field of characteristic $\neq 2$ and $x^2 a \in F[x]$ is an irreducible polynomial over F. Then show that its Galois group is of order 2.
- 7. Show that the Galois group of $x^4 + x^2 + 1$ is the same as that of $x^6 1$ and is of order 2.
- **8.** Show that the polynomial $x^7 10x^5 + 15x + 5$ is not solvable by radicals over Q.

Section - B

Answer ALL questions. Each question carries 20 marks.

 $(4\times20=80)$

- 9. / a) State and prove Gauss Lemma.
 - b) Let $F \subseteq E \subseteq K$ be fields. If $[K : E] < \infty$ and $[E : F] < \infty$ then show that
 - i) $[K:F] < \infty$
 - ii) [K:F] = [K:E][E:F].

B-236-02-01

(1)

[P.T.O.

A-236-01-01

M.Sc. DEGREE EXAMINATION, DEC. 2015 FIRST SEMESTER Branch: MATHEMATICS

MA 101: ALGEBRA

(Under CBCS w.e.f. 2015-16)

(Common to supplementary candidates also i,e., who appeared in Nov. 2014 and earlier)

(Common to Non-CBCS)

Time: 3 Hours

Max. Marks: 90

SECTION-A

Answer any FOUR questions. All questions carry equal marks

(Marks: $4\times4\frac{1}{2}=18$)

- 1. Let G be a group. Show that G is a G-set with respect to the group action '*' defined by $a*x=axa^{-1}$, for all $a \in G$ and $x \in G$
- 2. State and prove Cayley's theorem.
- Let $f: R \to S$ be a homomorphism of a ring R into a ring S. Then prove that ker $f = \{0\}$ if and only if f is one-one.
- 4. If R is a ring with unity then show that each maximal ideal is prime.
- 5. Prove that an irreducible element in a commutative principal ideal domain (PID) is always prime.
- Show that the ring of Gaussian integers $R = \{m + n\sqrt{-1}, m, n \in Z\}$ is a Euclidean domain.
 - 7. State and prove schur's lemma.
 - 8. If M is finitely generated free module over a commutative ring R, then prove that all bases of M are finite.

P.T.O.

M.Sc. DEGREE EXAMINATION, MAY- 2017

SECOND SEMESTER

Branch: MATHEMATICS / APPLIED MATHEMATICS MA 206: MEASURE AND INTEGRATION

(Revised Syllabus w.e.f. 2016 - 17)

Time: 3 Hours

Max. Marks: 100

SECTION-A

Answer any FOUR of the following questions. Each question carries 5 marks. $(4\times5=20)$

1. Let $\{A_n\}$ be a countable collection of sets of real numbers. Then prove that.

$$m^*(\cup A_n) \leq \sum m^* A_n$$

- 2. If f is a measurable function and f = g almost everywhere then prove that g is measurable.
- 3. Let ϕ and ψ be simple functions which vanish outside a set of finite measure. Then prove that

$$\int (a\phi + b\psi) = a\int \phi + b\int \psi.$$

- 4. State and prove lebesgue convergence theorem.
- 5. If f is a bounded variation on [a, b], then prove that $T_a^b = P_a^b + N_a^b$ and $f(b) f(a) = P_a^b N_a^b$.
- 6. State and prove Jensen inequality.
- 7. Show that every convergent sequence is a cauchy sequence.
- 8. Show that $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

SECTION-B

Answer ALL questions. Each question carries 20 marks.

 $(4 \times 20 = 80)$

9. Prove that the outer measure of an interval is its length.

OR

- 10. a) Let A be any set, and E_1, E_2, \dots, E_n a finite sequence of disjoint measurable sets. Then prove that $m * \left(A \cap \left[\bigcup_{i=1}^n E_i \right] \right) = \sum_{i=1}^n m * (A \cap E_i)$
 - b) Prove that the interval (α, ∞) is measureable.

OR

11. Let f be defined and bounded on a measurable set E with m E finite. In order that in f $\int_{E} \psi(x) dx = \sup_{f \ge \phi} \int_{E} \phi(x) dx \text{ for all simple functions } \phi \text{ and } \psi, \text{ show that it is necessary}$ and sufficient that f be measurable.

OR

- 12. a) State and prove bounded convergence theorem.
 - b) State and prove Fatou's lemma.
- 13. State and prove Vitali's lemma.

OR

- **14.** a) Prove that *a* function *f* is of bounded variation on [a, b] if and only if *f* is the difference of two monotone real valued functions on [a, b].
 - b) Let f be an integrable function on [a, b] and suppose that $f(x) = f(a) + \int_a^x f(t) dt$. Then prove that f'(x) = f(x) for almost all x in [a, b].

15. Prove that P spaces are complete.

OR

 $\textbf{16.} \quad \textbf{State and prove Riesz Representation Theorem.}$

.0.

M.Sc. DEGREE EXAMINATION, MAY - 2017 SECOND SEMESTER

Branch: MATHEMATICS / APPLIED MATHEMATICS

MA 203: TOPOLOGY

(Revised Syllabus w.e.f. 2016 - 17)

Time: 3 Hours

Max. Marks: 100

Section - A

Answer any Four of the following questions. Each question carries 5 marks. $(4 \times 5 = 20)$

- 1. Show that in any metric space X, each open sphere is an open set.
- 2. Let x be a complete metric space and y be a subspace of x. Then show that y is complete if it is closed.
- 3. Let T_1 and T_2 be two topologies on a nonempty set x. Then show that $T_1 \cap T_2$ is also a topology.
- Let x be a topological space and A a subset of x. Then prove that $\overline{A} = A \cup D(A)$.
- Prove that any continuous image of a compact space is compact.
- 6. Prove that every compact metric space has the Bolzano weierstross property.
- Show that every compact subspace of a Hausdorff space is closed.
- 8. Prove that a subspace of the real line R is connected if it is an interval.

B-236-02-03

(1)

[P.T.O.

Section - B

Answer ALL questions. Each question carries 20 marks.

 $(4 \times 20 = 80)$

- 9. a) Let X be a metric space. Prove that a subset G of x is open if and only if it is a union of open spheres.
 - b) State and prove cantor's intersection theorem.

OR

10. a) Let x and y be metric spaces and of a mapping of x into y. Then prove that f is continuous at x_0 if and only if

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$$

b) Prove that the set R^n of all n-tuplers $x = (x_1, x_2, ..., x_n)$ of real numbers is areal Banach space with respect to coordinate wise addition and scalar multiplication and the norm

defined by
$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$
.

- 11. a) State and prove Lindelof's Theorem.
 - b) Let X be a second Countable space. Then prove that any open base for X has a countable subclass which is also an open base.

OR

- 12. a) Prove that every separable metric space is second countable.
 - b) Let x be a non empty set and let S be an arbitrary class of subsets of X. Then show that S can serve as an open subbase for a topology on X, in the sense that the class of all unions of finite intersections of sets in S is a Topology.
- 13. a) State and prove Heine Borel Theorem.
 - b) State and prove Tychonoff's Theorem.

OR

- 14. State and Prove Ascoli's Theorem.
- 15. State and Prove Urysohn's lemma

OR

16. State and Prove Tietze Extension Theorem.

